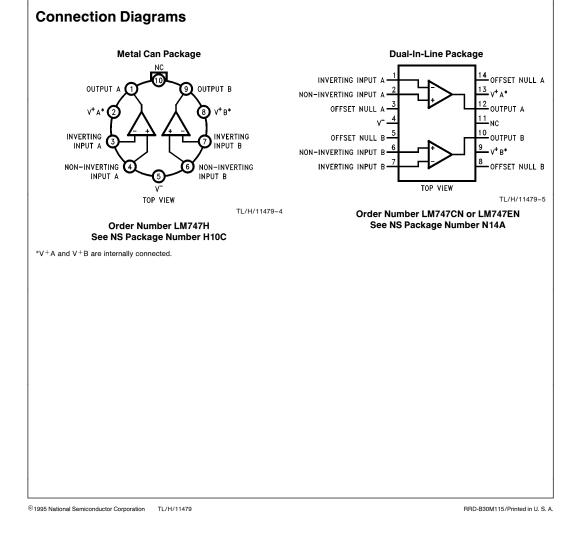


LM747 Dual Operational Amplifier

General Description

The LM747 is a general purpose dual operational amplifier. The two amplifiers share a common bias network and power supply leads. Otherwise, their operation is completely independent.


Additional features of the LM747 are: no latch-up when input common mode range is exceeded, freedom from oscillations, and package flexibility.

The LM747C/LM747E is identical to the LM747/LM747A except that the LM747C/LM747E has its specifications guaranteed over the temperature range from 0°C to +70°C instead of -55°C to +125°C.

Features

- No frequency compensation required
- Short-circuit protection
- Wide common-mode and differential voltage ranges
- Low power consumption
- No latch-up
- Balanced offset null

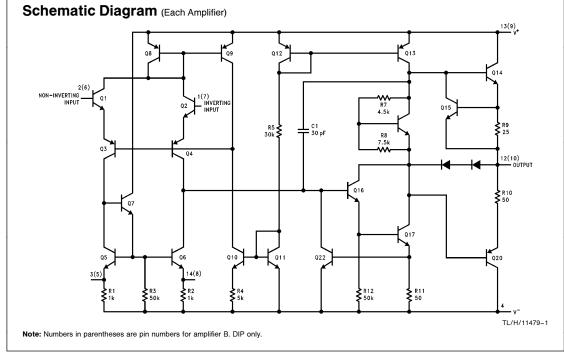
LM747 Dual Operational Amplifier

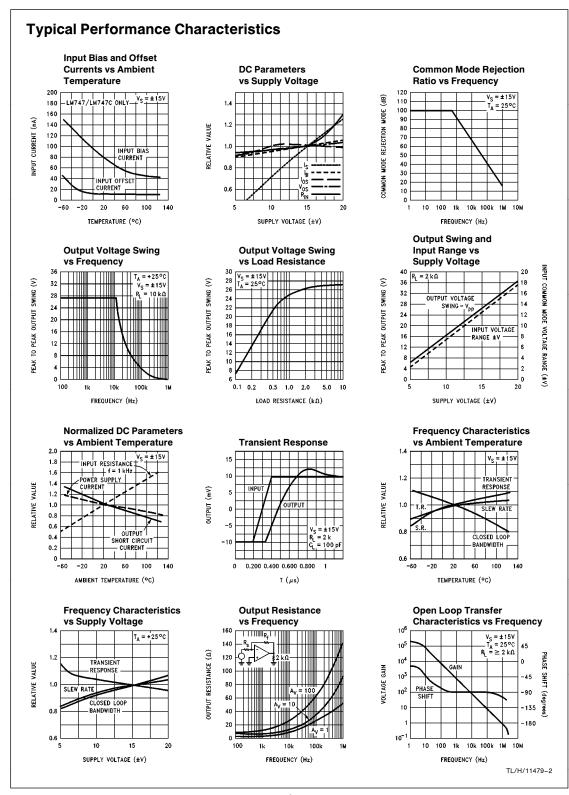
This datasheet has been downloaded from http://www.digchip.com at this page

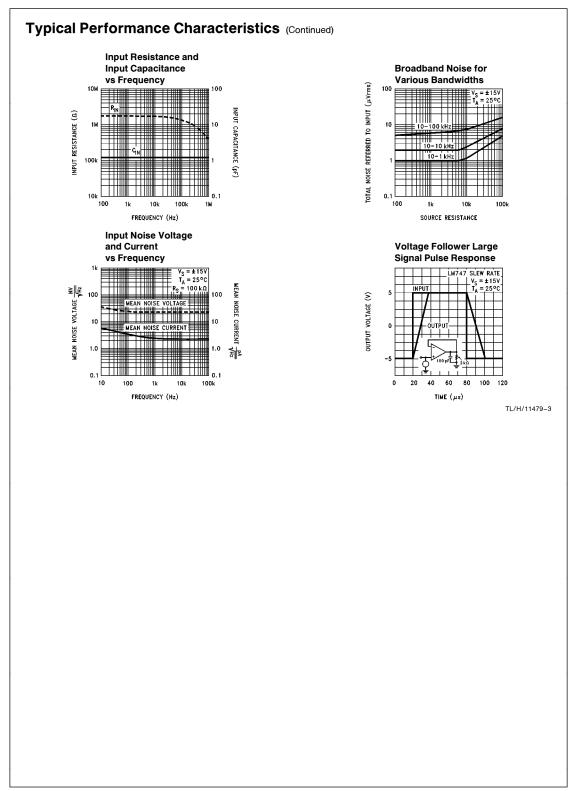
November 1994

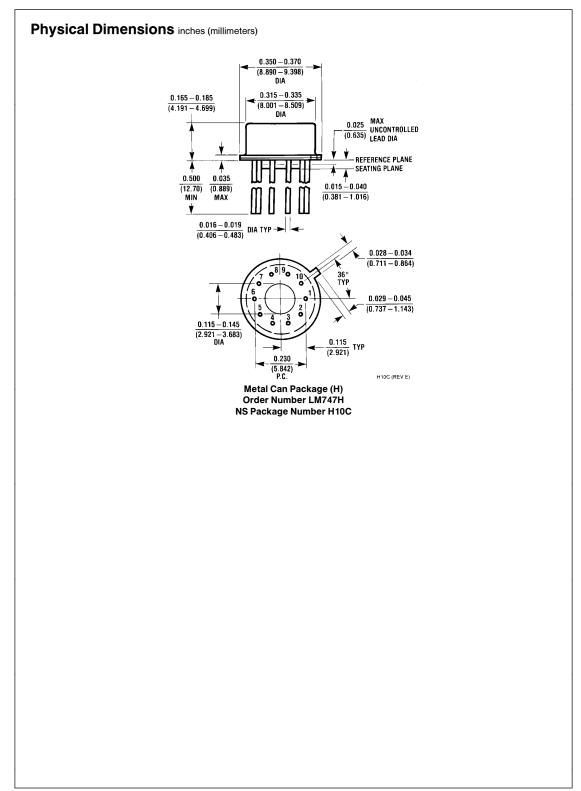
Absolute Maximum Rati	ngs		
If Military/Aerospace specified dev		Input Voltage (Note 2)	±15V
please contact the National Sen		Output Short-Circuit Duration	Indefinite
Office/Distributors for availability an Supply Voltage LM747/LM747A LM747C/LM747E	t specifications. ±22V ±18V	Operating Temperature Range LM747/LM747A LM747C/LM747E Storage Temperature Range	-55°C to +125°C 0°C to +70°C -65°C to +150°C
Power Dissipation (Note 1)	800 mW	Lead Temperature (Soldering, 10 sec.)	-03 C 10 + 150 C
Differential Input Voltage	± 30V		300°C

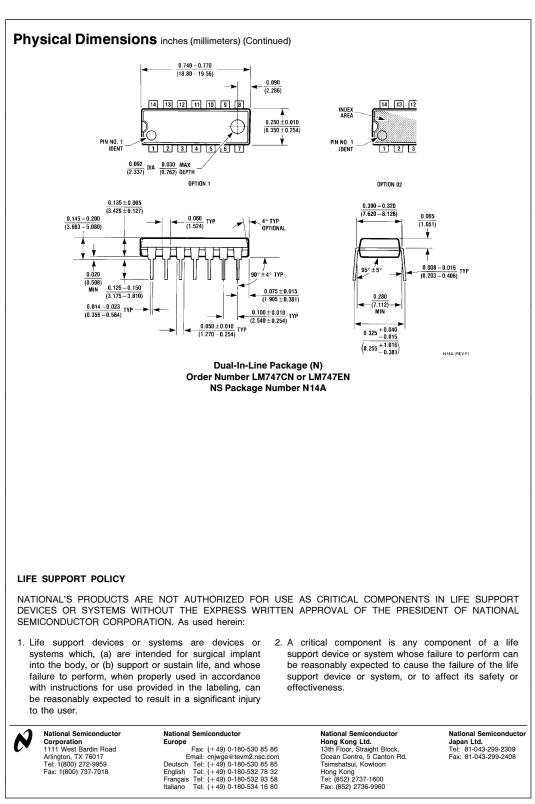
Electrical Characteristics (Note 3)


Parameter	Conditions	LM747A/LM747E			LM747			LM747C			Units
Farameter	Conditions	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
Input Offset Voltage	$\begin{array}{l} T_{A} = 25^{\circ}C \\ R_{S} \leq 10 \; k\Omega \\ R_{S} \leq 50\Omega \end{array}$		0.8	3.0		1.0	5.0		2.0	6.0	mV
	$\label{eq:RS} \begin{array}{l} R_S \leq 50\Omega \\ R_S \leq 10 \ \text{k}\Omega \end{array}$			4.0			6.0			7.5	m∖
Average Input Offset Voltage Drift				15							μV/°
Input Offset Voltage Adjustment Range	$T_A=25^\circ C, V_S=\pm 20V$	±10				±15			±15		m۷
Input Offset Current	$T_A = 25^{\circ}C$		3.0	30		20	200		20	200	nA
				70		85	500			300	
Average Input Offset Current Drift				0.5							nA/°
Input Bias Current	$\begin{array}{l} T_A = 25^{\circ}C \\ T_{AMIN} \leq T_A \leq T_{AMAX} \end{array} \end{array} \label{eq:tau}$		30	80 0.210		80	500 1.5		80	500 0.8	nA μA
Input Resistance	$T_{A}=25^{\circ}C,V_{S}=\pm20V$	1.0	6.0		0.3	2.0		0.3	2.0		MΩ
	$V_{S} = \pm 20V$	0.5									
Input Voltage Range	$T_A = 25^{\circ}C$							±12	±13		v
		±12	±13		±12	±13					
Large Signal Voltage Gain	$ \begin{array}{l} T_{A} = 25^{\circ}C, R_{L} \geq 2 k\Omega \\ V_{S} = \pm 20V, V_{O} = \pm 15V \end{array} $	50									V/m
	$\label{eq:VS} \begin{array}{l} V_S = \ \pm \ 15 V, \ V_O = \ \pm \ 10 V \\ R_L \geq 2 \ k \Omega \end{array}$				50	200		20	200		V/m
	$V_{\rm S} = \pm 20V, V_{\rm O} = \pm 15V$	32									V/m
	$V_{S}=\pm15V, V_{O}=\pm10V$				25			15			V/m
	$V_{S} = \pm 5V, V_{O} = \pm 2V$	10									V/m
Output Voltage Swing	$\label{eq:VS} \begin{split} V_S &= \pm 20V \\ R_L \geq 10 \; k\Omega \\ R_L \geq 2 \; k\Omega \end{split}$	±16 ±15									v
	$\label{eq:VS} \begin{split} V_S &= \pm 15 V \\ R_L \geq 10 \; k\Omega \\ R_L \geq 2 \; k\Omega \end{split}$				±12 ±10	±14 ±13		±12 ±10	±14 ±13		v
Output Short Circuit Current	$T_A = 25^{\circ}C$	10 10	25	35 40		25			25		mA
Common-Mode Rejection Ratio	$R_{S} \leq 10 \ \text{k}\Omega, \ V_{CM} = \ \pm 12 V$				70	90		70	90		dB
	$R_{S} \le 50 \text{ k}\Omega, V_{CM} = \pm 12 V$	80	95								


Parameter	Conditions	LM747A/LM747E			LM747				LM7470	;	
		Min	Тур	Мах	Min	Тур	Max	Min	Тур	Max	Units
Supply Voltage Rejection Ratio	$\label{eq:VS} \begin{array}{l} V_S=\pm 20V \mbox{ to } V_S=\pm 5V \\ R_S\leq 50\Omega \\ R_S\leq 10 \mbox{ k}\Omega \end{array}$	86	96		77	96		77	96		dB
Transient Response Rise Time Overshoot	$T_A = 25^{\circ}C$, Unity Gain		0.25 6.0	0.8 20		0.3 5			0.3 5		μs %
Bandwidth (Note 4)	$T_A = 25^{\circ}C$	0.437	1.5								MHz
Slew Rate	$T_A = 25^{\circ}C$, Unity Gain	0.3	0.7			0.5			0.5		V/µs
Supply Current/Amp	$T_A = 25^{\circ}C$			2.5		1.7	2.8		1.7	2.8	mA
Power Consumption/Amp	$\begin{array}{l} T_{A}=25^{\circ}C\\ V_{S}=\pm20V\\ V_{S}=\pm15V \end{array}$		80	150		50	85		50	85	mW
LM747A	$V_{S} = \pm 20V$ $T_{A} = T_{AMIN}$ $T_{A} = T_{AMAX}$			165 135							mW
LM747E	$\label{eq:VS} \begin{array}{l} V_S = \pm 20V \\ T_A = T_{AMIN} \\ T_A = T_{AMAX} \end{array}$			150 150 150							mW
LM747	$V_{S} = \pm 15V$ $T_{A} = T_{AMIN}$ $T_{A} = T_{AMAX}$					60 45	100 75				mW


Note 1: The maximum junction temperature of the LM747C/LM747E is 100°C. For operating at elevated temperatures, devies in the TO-5 package must be derated based on a thermal resistance of 150°C/W, junction to ambient, or 45°C/W, junction to case. The thermal resistance of the dual-in-line package is 100°C/W, junction to ambient.


Note 2: For supply voltages less than \pm 15V, the absolute maximum input voltage is equal to the supply voltage.


Note 3: These specifications apply for $\pm 5V \le V_S \le \pm 20V$ and $-55^{\circ}C \le T_A \le 125^{\circ}C$ for the LM747A and $0^{\circ}C \le T_A \le 70^{\circ}C$ for the LM747E unless otherwise specified. The LM747 and LM747C are specified for $V_S = \pm 15V$ and $-55^{\circ}C \le T_A \le 125^{\circ}C$ and $0^{\circ}C \le T_A \le 70^{\circ}C$, respectively, unless otherwise specified. Note 4: Calculated value from: 0.35/Rise Time (μ s).

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications